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 Abstract – FID4.1 is a freeware software tool for supervised 
classification, using fuzzy decision tree and forest. It is loosely 
based on the ID3 decision tree algorithm. It handles nominal, 
continuous, and linguistic attributes and classes. It can also 
operate with noisy and unknown features, both in training and 
testing data. For continuous attributes that are not partitioned 
into fuzzy sets, the system generates fuzzy partitioning using top-
down and bottom-up methods. Finally, FID uses a number of 
inferences, falling into two classes: set-based and exemplar-
based. In this paper we overview the major features and 
functionalities of FID4.1.  
 

I.  INTRODUCTION 

In the mass storage era, knowledge acquisition represents 
a major knowledge engineering bottleneck. Computer 
programs extracting knowledge from data successfully 
attempt to alleviate this problem. Supervised classification 
systems are computer programs which extract some form of 
knowledge from data represented by training data with known 
classifications. The knowledge is often in the form of explicit 
data structure plus an inference method. Among such systems, 
those building decision trees are the most popular, due to their 
conformity, comprehensibility, accuracy, and low complexity.  

Decision trees were popularized by Quinlan with the ID3 
program [11]. Decision trees are examples of recursive 
partitioning methods, which are data-driven algorithms 
building knowledge models in the form of a tree. In the 
recursive procedure, the algorithm selects a test which 
maximizes information gain, and then partitions the domain, 
and the training examples, using the test. In ID3, the test is 
based on symbolic attribute values [11], while in CART it is 
based on a threshold [2]. The partitioning stops based on a 
number of potential criteria – either when no more tests are 
available, and just to avoid overspecialization. The tree can be 
used for data classification when coupled with an inference 
procedure – match a new datum against the tree, select the leaf 
that “recognizes” it, and report the decision associated with 
that leaf. Problems rise when no such leaf can be found, 
multiple leaves are found, in addition with discontinuity of the 
decision with small variations in data [6][12][13]. 

Systems based on this approach have traditionally worked 
well in symbolic domains. More recent extensions are meant 
to allow operating with continuous attributes, incorporate 
probabilistic processing, etc. [12][13][14] 

In recent years, neural networks have become equally 
popular due to relative ease of application and abilities to 
provide gradual responses. However, they generally lack 

similar levels of comprehensibility. A fuzzy approach attempts 
to bridge the gap between incomprehensible quantitative 
processing and comprehensible qualitative processing. Fuzzy 
sets provide bases for fuzzy representation [15]. Fuzzy sets 
and fuzzy logic allow the modeling of language-related 
uncertainties, while providing a symbolic framework for 
knowledge comprehensibility [16][17]. In fuzzy rule-based 
systems, the symbolic rules provide for ease of understanding 
and/or transfer of high-level knowledge, while the fuzzy sets, 
along with fuzzy logic and approximate reasoning methods, 
provide the ability to model fine knowledge details. 
Accordingly, fuzzy representation is becoming increasingly 
popular in dealing with problems of uncertainty, noise, and 
inexact data. It has been successfully applied to problems in 
many industrial areas [3].  

Fuzzy Decision Tree (FID) successfully merged fuzzy 
representation, with its approximate reasoning capabilities, 
and symbolic decision trees, while preserving advantages of 
both: uncertainty handling and gradual processing of the 
former with the comprehensibility, popularity, and ease of 
application of the latter [6]. As a decision tree, FID has three 
major components: one for partitioning any continuous 
attribute without predefined fuzzy sets, one for building an 
explicit tree or forest, and one for knowledge inference from 
the explicit representation. In this paper, we overview the 
major features and functionalities of FID 4.1, the latest system 
release. 

II. FID HISTORY 

FID2.0 has been released in 1997. It provided the tree 
building module as well as an inference module, with 
approximate reasoning inferences based on fuzzy sets as well 
as exemplar based inferences. Among additional features were 
abilities to process missing features, data representation using 
categorical and fuzzy terms * , chi-square test to prune 
insignificant attributes, IV method to alleviate ID’s bias 
toward larger domains, and extended inferences to trigger 
when the tree fails to classify a new datum. 

FID3.2 has been released in 1998. Major changes vs. 
release v2.0 include explicit processing of categorical 
features, along with special conflict resolutions, implicit 
normalization of attributes, as well as a module for 
partitioning continuous attributes without predefined fuzzy 
sets. 

                                                           
* In FID2.0, categorical domains were processed as non-
overlapping fuzzy sets.  



FID4.0 has been released in 2000. It major feature is that 
the decision tree retains alternative split tests, thus creates a 3-
D tree (forest). FID4.1, currently in Beta testing, corrects 
minor errors and resolves platform compatibility problems. 
We are also working a Java-based platform independent 
interface for setting run parameters as well as tree 
visualization. 

III. FID FEATURES 

FID4.1is a classification system which acquires 
knowledge in the form of a tree (or forest) and an inference 
method, based on training data. It can subsequently be used 
for classification of a new unknown event.  FID processes 
data expressed in terms of: numerical domain values (for 
continuous or linear numerical attributes), such as 
Salary=45,000; fuzzy terms, such as Salary is High, and 
categorical terms, such as BloodType is A. This applies to both 
attributes and classification. However, attribute features can 
be missing, while decision value is required. In addition, 
training data can be weighted to express relevance of each 
individual example.  

For continuous/linear attributes, the feature can thus be 
expressed using either the actual domain value, or a fuzzy 
term corresponding to a fuzzy set from the predefined fuzzy 
partitioning. However, if the attribute doesn’t have the 
predefined partitioning, all features must be the exact domain 
values (or unknown). In this case, one of the two partitioning 
methods will generate fuzzy sets. 
 
A. Domain Partitioning 

FID4.1 provides two different partitioning methods: top-
down and bottom up. Both are data driven, but the former one 
partitions the domains, while the latter merges sub-partitions.  

The top-down partitioning method works similarly to the 
CART system [2]. It follows the same recursive partitioning 
algorithm. However, it is not a depth-first algorithm. Instead, 
tree nodes (starting with the root node containing all the 
training data) are placed on a priority queue, ordered by the 
number of examples contained. The priority technique 
guarantees that each new partition will be based on the 
maximum number of training data. The test in a node is the 
one maximizing the information gain, based on: testing the 
known attributes; testing the attributes being partitioned while 
using the fuzzy covering generated so far (a single fuzzy set 
with complete covering to start with), testing the same 
attributes but with splitting each of the current fuzzy sets into 
two overlapping sets.  However, each attribute being 
partitioned is not partitioned any more when a maximal 
number of fuzzy sets are generated. This recursive procedure 
stops based on the same stopping criteria as those for building 
a decision tree. It is fully described in [7].  

It is important to note that FID then follows with its 
normal operation rather than using the generated tree (tree 
further generated tree will be wider but shallower in general). 
Also, this technique partitions only those attributes which are 
the most relevant for information gain, while it fails to 

partition the other attributes. Therefore, it is less appropriate 
for the forest, where alternative tests are sought [8][9]. 
Moreover, this is a local technique, as each new partition is 
decided based on some local training data contained in a 
single tree node. 

The bottom-up partitioning is a data-driven technique 
which partitions all domains without predefined partitioning, 
while retaining the other domains. It operates opposite to the 
top-down technique, as it starts with maximal partitioning and 
merges individual partitions. Moreover, it is a global method 
as it always uses all the available data. Therefore, it is 
generally preferable, especially for the forest.  

The algorithm starts with complete partitioning of the 
appropriate domains: each attribute-value spans its own 
partition. These partitions are subsequently merged, using 
some heuristics following entropy. Each domain is partitioned 
to a number of fuzzy sets within a user-defined range. The 
procedure is fully described in [4]. 

 
B. Tree Building 

The next step is to build the decision tree. While building 
the tree, the best test (maximizing the information gain) must 
be selected. The recursive process stops when there are no 
more available tests, or when information level or the number 
of remaining examples falls below certain thresholds. When 
selecting the best test (highest information gain), attributes can 
be pruned so that FID disregards attributes failing the chi-
square test of relevancy. Moreover, attributes with high 
domain cardinality (which have strong bias in the information 
gain formula) can have their gain normalized. 

To decide on the test, each training example must be 
matched against the specific test leading to a subtree. If the 
test is based on a categorical attribute, the outcome of the test 
is a Boolean value, and thus an example either belongs to the 
subtree or it doesn’t. For other attributes, the test is based on 
the degree of match of the example’s appropriate feature to a 
fuzzy restriction associated with a fuzzy linguistic value (and 
thus a fuzzy set). If the example’s feature is a numerical 
domain value, FID uses the membership function as the 
degree of the match. If the feature is a fuzzy term, FID uses 
the degree of match between two fuzzy sets [6].  If the feature 
value is unknown, the example can be disregarded, or 
alternatively it can be assigned to some of the subtrees.  

When moving down the tree, the degrees of satisfaction 
of the fuzzy restrictions (or the categorical value) are 
accumulated according to fuzzy T-norms [3][16][17]. The 
available global options include: min, product, drastic 
product, bounded product, and best (locally best).  

In FID4.1, each node can select more than one alternative 
test. For example, two independent tests can produce 
comparable information gains, and it would be a loss to toss 
one away. They are controlled by a few parameters, but 
generally alternatives with similar level of gain and higher in 
the tree are preferred.  

 



 
Fig. 1 A sample forest: two tests at the root, and two tests in the right tree 

slice. 
 
A sample decision forest is presented in Fig. 1. It is 

created by retaining two alternative tests in the root (based on 
attribute A and B). When we consider only one test at a time, 
we are talking of alternative slices of the forest. Each slice is a 
forest. However, if one takes only one alternative for every 
test, a simple tree is obtained. Fig. 2 presents the three 
possible slice-trees of Fig. 1.   

 

 
Fig. 2 The three tree slices of the forest in Fig. 1. 

 
 
A. Knowledge Inferences 

An ideal tree will have unique classification of training 
examples falling into individual leaves. However, the FID tree 
building procedure can stop node expansion for a number of 
reasons. Moreover, examples fall into leaves with different 
degrees (depending on the combined matches to the fuzzy 
restrictions leading to those nodes). Finally, the example’s 
classification can also be expressed with a numerical value, 
potentially matching more than one linguistic class value.  
Therefore, the FID tree is very unlikely to be such an ideal 

tree. This is in fact the source of the additional information 
expressed and retained in the tree, and thus should not be 
discarded. 

 
When a new unknown example is presented for 

classification, a few tasks take place. First, the example must 
be matched against the leaves of the tree, and then information 
inferred from all the leaves must be combined. This 
processing of the leaves separately follows the idea of local 
inference rule in fuzzy-based systems [3].  

The unknown example is matched against all the fuzzy 
restrictions leading to all the leaves, one feature at a time. 
Based on the degree of each match, and on the used T-norms 
to combine the matches (the same alternatives as for building 
the tree), the example may end up in a number of different 
leaves. If a specific feature is unknown, the example is sent to 
all possible subtrees with reduced degree. If the feature is 
know, but a subtree is missing (e.g., when there was no 
training data with this feature),  the available feature is 
fuzzified so that it matches the other domain values (this is 
done differently for categorical and other attributes) [6]. If the 
tree is a forest, the example progresses through all the 
available slices. 

When the matching leaves are identified, along with their 
degree of match, the next step is to take classification 
information generated by each such leaf individually (resolve 
so called internal conflict) and the combine information from 
multiple leaves and slices (resolve so called external conflict).  

These conflicts are resolved differently based on the 
inference method used: approximate-reasoning based on fuzzy 
sets, or exemplar-based. 

Exemplar-based learning refers to acquiring most 
important exemplar training data (either actual training data or 
artificially generated example) [1][5][14]. In our case, each 
individual leaf can be treated as an exemplar. Its classification 
can be either that most prominent in the leaf, or an aggregated 
class value [5]. Subsequently, classification from all leaves 
recognizing the unknown example must be aggregated. This 
can be done by computing super-exemplar and taking its 
classification, or by taking the information from the [5].  

Approximate-reasoning set-based inferences aggregate 
the information from multiple leaves following the local-
inference rule. The processing can be simplified by 
representing fuzzy sets by their center of gravity, resulting in 
center-of-gravity methods (which can additionally be 
weighted). Alternatively, the fuzzy sets can be processed 
explicitly with sum-center of gravity or max-center of gravity 
[3][6]. Moreover, when taking a single leaf into account, one 
may consider only the fuzzy sets with most training data, or 
all the fuzzy sets. As an illustration, consider the well known 
Mexican Sombrero function, plotted in Fig. 3. When acquired 
with a single decision tree (not a forest), and tested using two 
different inferences, the function is recovered with different 
degree of detail, as indicated in Fig. 4. 
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Fig. 3 The Mexican Sombrero function.  

 
Finally, an inference may use just the most prominent tree 

slice (following the highest-gain test in every node), or it can 
combine information from leaves of multiple trees, in a similar 
way as combining information from leaves of a single tree. 

 

 
Fig. 4 Visualization of the FID acquired knowledge (tree +inference) for the 

same tree but two different inferences. 
 

 
A. Other Features 

FID4.1 supports a number of other small features. As 
previously mentioned, attributes can be pruned for relevancy 
based on the chi-square test. Bias in attributes with large set of 
linguistic/nominal values can be normalized. Known attribute 
values can be processed both during training and testing (gain 
for attributes with large number of missing features is also 
reduced following [13]. One feature still remains to be 
explained. 

What happens when a new example fails to be recognized 
by a given inference. One option would be to trigger a more 
relaxed inference (e.g., taking more information into account, 
such as considering a forest rather than a single tree). 
However, this is left for the user to decide to change the 
inference. At present, FID can be forced to classify an 
example using the same inference. This is accomplished by 

fuzzifying the training example that is replacing its features 
with newly constructed fuzzy sets (for non-categorical 
attributes) and relaxing the categorical features, through a few 
stages, until some matches are found. 
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