
FID4.1: an Overview

C.Z. Janikow
Department of Mathematics and Computer Science

University of Missouri – St. Louis
St. Louis, MO 63121 USA
cjanikow@ola.cs.umsl.edu

 Abstract – FID4.1 is a freeware software tool for supervised
classification, using fuzzy decision tree and forest. It is loosely
based on the ID3 decision tree algorithm. It handles nominal,
continuous, and linguistic attributes and classes. It can also
operate with noisy and unknown features, both in training and
testing data. For continuous attributes that are not partitioned
into fuzzy sets, the system generates fuzzy partitioning using top-
down and bottom-up methods. Finally, FID uses a number of
inferences, falling into two classes: set-based and exemplar-
based. In this paper we overview the major features and
functionalities of FID4.1.

I. INTRODUCTION

In the mass storage era, knowledge acquisition represents
a major knowledge engineering bottleneck. Computer
programs extracting knowledge from data successfully
attempt to alleviate this problem. Supervised classification
systems are computer programs which extract some form of
knowledge from data represented by training data with known
classifications. The knowledge is often in the form of explicit
data structure plus an inference method. Among such systems,
those building decision trees are the most popular, due to their
conformity, comprehensibility, accuracy, and low complexity.

Decision trees were popularized by Quinlan with the ID3
program [11]. Decision trees are examples of recursive
partitioning methods, which are data-driven algorithms
building knowledge models in the form of a tree. In the
recursive procedure, the algorithm selects a test which
maximizes information gain, and then partitions the domain,
and the training examples, using the test. In ID3, the test is
based on symbolic attribute values [11], while in CART it is
based on a threshold [2]. The partitioning stops based on a
number of potential criteria – either when no more tests are
available, and just to avoid overspecialization. The tree can be
used for data classification when coupled with an inference
procedure – match a new datum against the tree, select the leaf
that “recognizes” it, and report the decision associated with
that leaf. Problems rise when no such leaf can be found,
multiple leaves are found, in addition with discontinuity of the
decision with small variations in data [6][12][13].

Systems based on this approach have traditionally worked
well in symbolic domains. More recent extensions are meant
to allow operating with continuous attributes, incorporate
probabilistic processing, etc. [12][13][14]

In recent years, neural networks have become equally
popular due to relative ease of application and abilities to
provide gradual responses. However, they generally lack

similar levels of comprehensibility. A fuzzy approach attempts
to bridge the gap between incomprehensible quantitative
processing and comprehensible qualitative processing. Fuzzy
sets provide bases for fuzzy representation [15]. Fuzzy sets
and fuzzy logic allow the modeling of language-related
uncertainties, while providing a symbolic framework for
knowledge comprehensibility [16][17]. In fuzzy rule-based
systems, the symbolic rules provide for ease of understanding
and/or transfer of high-level knowledge, while the fuzzy sets,
along with fuzzy logic and approximate reasoning methods,
provide the ability to model fine knowledge details.
Accordingly, fuzzy representation is becoming increasingly
popular in dealing with problems of uncertainty, noise, and
inexact data. It has been successfully applied to problems in
many industrial areas [3].

Fuzzy Decision Tree (FID) successfully merged fuzzy
representation, with its approximate reasoning capabilities,
and symbolic decision trees, while preserving advantages of
both: uncertainty handling and gradual processing of the
former with the comprehensibility, popularity, and ease of
application of the latter [6]. As a decision tree, FID has three
major components: one for partitioning any continuous
attribute without predefined fuzzy sets, one for building an
explicit tree or forest, and one for knowledge inference from
the explicit representation. In this paper, we overview the
major features and functionalities of FID 4.1, the latest system
release.

II. FID HISTORY

FID2.0 has been released in 1997. It provided the tree
building module as well as an inference module, with
approximate reasoning inferences based on fuzzy sets as well
as exemplar based inferences. Among additional features were
abilities to process missing features, data representation using
categorical and fuzzy terms * , chi-square test to prune
insignificant attributes, IV method to alleviate ID’s bias
toward larger domains, and extended inferences to trigger
when the tree fails to classify a new datum.

FID3.2 has been released in 1998. Major changes vs.
release v2.0 include explicit processing of categorical
features, along with special conflict resolutions, implicit
normalization of attributes, as well as a module for
partitioning continuous attributes without predefined fuzzy
sets.

* In FID2.0, categorical domains were processed as non-
overlapping fuzzy sets.

FID4.0 has been released in 2000. It major feature is that
the decision tree retains alternative split tests, thus creates a 3-
D tree (forest). FID4.1, currently in Beta testing, corrects
minor errors and resolves platform compatibility problems.
We are also working a Java-based platform independent
interface for setting run parameters as well as tree
visualization.

III. FID FEATURES

FID4.1is a classification system which acquires
knowledge in the form of a tree (or forest) and an inference
method, based on training data. It can subsequently be used
for classification of a new unknown event. FID processes
data expressed in terms of: numerical domain values (for
continuous or linear numerical attributes), such as
Salary=45,000; fuzzy terms, such as Salary is High, and
categorical terms, such as BloodType is A. This applies to both
attributes and classification. However, attribute features can
be missing, while decision value is required. In addition,
training data can be weighted to express relevance of each
individual example.

For continuous/linear attributes, the feature can thus be
expressed using either the actual domain value, or a fuzzy
term corresponding to a fuzzy set from the predefined fuzzy
partitioning. However, if the attribute doesn’t have the
predefined partitioning, all features must be the exact domain
values (or unknown). In this case, one of the two partitioning
methods will generate fuzzy sets.

A. Domain Partitioning

FID4.1 provides two different partitioning methods: top-
down and bottom up. Both are data driven, but the former one
partitions the domains, while the latter merges sub-partitions.

The top-down partitioning method works similarly to the
CART system [2]. It follows the same recursive partitioning
algorithm. However, it is not a depth-first algorithm. Instead,
tree nodes (starting with the root node containing all the
training data) are placed on a priority queue, ordered by the
number of examples contained. The priority technique
guarantees that each new partition will be based on the
maximum number of training data. The test in a node is the
one maximizing the information gain, based on: testing the
known attributes; testing the attributes being partitioned while
using the fuzzy covering generated so far (a single fuzzy set
with complete covering to start with), testing the same
attributes but with splitting each of the current fuzzy sets into
two overlapping sets. However, each attribute being
partitioned is not partitioned any more when a maximal
number of fuzzy sets are generated. This recursive procedure
stops based on the same stopping criteria as those for building
a decision tree. It is fully described in [7].

It is important to note that FID then follows with its
normal operation rather than using the generated tree (tree
further generated tree will be wider but shallower in general).
Also, this technique partitions only those attributes which are
the most relevant for information gain, while it fails to

partition the other attributes. Therefore, it is less appropriate
for the forest, where alternative tests are sought [8][9].
Moreover, this is a local technique, as each new partition is
decided based on some local training data contained in a
single tree node.

The bottom-up partitioning is a data-driven technique
which partitions all domains without predefined partitioning,
while retaining the other domains. It operates opposite to the
top-down technique, as it starts with maximal partitioning and
merges individual partitions. Moreover, it is a global method
as it always uses all the available data. Therefore, it is
generally preferable, especially for the forest.

The algorithm starts with complete partitioning of the
appropriate domains: each attribute-value spans its own
partition. These partitions are subsequently merged, using
some heuristics following entropy. Each domain is partitioned
to a number of fuzzy sets within a user-defined range. The
procedure is fully described in [4].

B. Tree Building

The next step is to build the decision tree. While building
the tree, the best test (maximizing the information gain) must
be selected. The recursive process stops when there are no
more available tests, or when information level or the number
of remaining examples falls below certain thresholds. When
selecting the best test (highest information gain), attributes can
be pruned so that FID disregards attributes failing the chi-
square test of relevancy. Moreover, attributes with high
domain cardinality (which have strong bias in the information
gain formula) can have their gain normalized.

To decide on the test, each training example must be
matched against the specific test leading to a subtree. If the
test is based on a categorical attribute, the outcome of the test
is a Boolean value, and thus an example either belongs to the
subtree or it doesn’t. For other attributes, the test is based on
the degree of match of the example’s appropriate feature to a
fuzzy restriction associated with a fuzzy linguistic value (and
thus a fuzzy set). If the example’s feature is a numerical
domain value, FID uses the membership function as the
degree of the match. If the feature is a fuzzy term, FID uses
the degree of match between two fuzzy sets [6]. If the feature
value is unknown, the example can be disregarded, or
alternatively it can be assigned to some of the subtrees.

When moving down the tree, the degrees of satisfaction
of the fuzzy restrictions (or the categorical value) are
accumulated according to fuzzy T-norms [3][16][17]. The
available global options include: min, product, drastic
product, bounded product, and best (locally best).

In FID4.1, each node can select more than one alternative
test. For example, two independent tests can produce
comparable information gains, and it would be a loss to toss
one away. They are controlled by a few parameters, but
generally alternatives with similar level of gain and higher in
the tree are preferred.

Fig. 1 A sample forest: two tests at the root, and two tests in the right tree

slice.

A sample decision forest is presented in Fig. 1. It is

created by retaining two alternative tests in the root (based on
attribute A and B). When we consider only one test at a time,
we are talking of alternative slices of the forest. Each slice is a
forest. However, if one takes only one alternative for every
test, a simple tree is obtained. Fig. 2 presents the three
possible slice-trees of Fig. 1.

Fig. 2 The three tree slices of the forest in Fig. 1.

A. Knowledge Inferences

An ideal tree will have unique classification of training
examples falling into individual leaves. However, the FID tree
building procedure can stop node expansion for a number of
reasons. Moreover, examples fall into leaves with different
degrees (depending on the combined matches to the fuzzy
restrictions leading to those nodes). Finally, the example’s
classification can also be expressed with a numerical value,
potentially matching more than one linguistic class value.
Therefore, the FID tree is very unlikely to be such an ideal

tree. This is in fact the source of the additional information
expressed and retained in the tree, and thus should not be
discarded.

When a new unknown example is presented for

classification, a few tasks take place. First, the example must
be matched against the leaves of the tree, and then information
inferred from all the leaves must be combined. This
processing of the leaves separately follows the idea of local
inference rule in fuzzy-based systems [3].

The unknown example is matched against all the fuzzy
restrictions leading to all the leaves, one feature at a time.
Based on the degree of each match, and on the used T-norms
to combine the matches (the same alternatives as for building
the tree), the example may end up in a number of different
leaves. If a specific feature is unknown, the example is sent to
all possible subtrees with reduced degree. If the feature is
know, but a subtree is missing (e.g., when there was no
training data with this feature), the available feature is
fuzzified so that it matches the other domain values (this is
done differently for categorical and other attributes) [6]. If the
tree is a forest, the example progresses through all the
available slices.

When the matching leaves are identified, along with their
degree of match, the next step is to take classification
information generated by each such leaf individually (resolve
so called internal conflict) and the combine information from
multiple leaves and slices (resolve so called external conflict).

These conflicts are resolved differently based on the
inference method used: approximate-reasoning based on fuzzy
sets, or exemplar-based.

Exemplar-based learning refers to acquiring most
important exemplar training data (either actual training data or
artificially generated example) [1][5][14]. In our case, each
individual leaf can be treated as an exemplar. Its classification
can be either that most prominent in the leaf, or an aggregated
class value [5]. Subsequently, classification from all leaves
recognizing the unknown example must be aggregated. This
can be done by computing super-exemplar and taking its
classification, or by taking the information from the [5].

Approximate-reasoning set-based inferences aggregate
the information from multiple leaves following the local-
inference rule. The processing can be simplified by
representing fuzzy sets by their center of gravity, resulting in
center-of-gravity methods (which can additionally be
weighted). Alternatively, the fuzzy sets can be processed
explicitly with sum-center of gravity or max-center of gravity
[3][6]. Moreover, when taking a single leaf into account, one
may consider only the fuzzy sets with most training data, or
all the fuzzy sets. As an illustration, consider the well known
Mexican Sombrero function, plotted in Fig. 3. When acquired
with a single decision tree (not a forest), and tested using two
different inferences, the function is recovered with different
degree of detail, as indicated in Fig. 4.

A B

B C A C

A

A

B C
B

A

B

C

A

Fig. 3 The Mexican Sombrero function.

Finally, an inference may use just the most prominent tree

slice (following the highest-gain test in every node), or it can
combine information from leaves of multiple trees, in a similar
way as combining information from leaves of a single tree.

Fig. 4 Visualization of the FID acquired knowledge (tree +inference) for the

same tree but two different inferences.

A. Other Features

FID4.1 supports a number of other small features. As
previously mentioned, attributes can be pruned for relevancy
based on the chi-square test. Bias in attributes with large set of
linguistic/nominal values can be normalized. Known attribute
values can be processed both during training and testing (gain
for attributes with large number of missing features is also
reduced following [13]. One feature still remains to be
explained.

What happens when a new example fails to be recognized
by a given inference. One option would be to trigger a more
relaxed inference (e.g., taking more information into account,
such as considering a forest rather than a single tree).
However, this is left for the user to decide to change the
inference. At present, FID can be forced to classify an
example using the same inference. This is accomplished by

fuzzifying the training example that is replacing its features
with newly constructed fuzzy sets (for non-categorical
attributes) and relaxing the categorical features, through a few
stages, until some matches are found.

REFERENCES
[1] E.R. Baires, B.W. Porter and C.C. Wier. “PROTOS: An Exemplar-Based

Learning Apprentice”. Machine Learning III. Morgan Kaufmann, pp.
112-127.

[2] L. Breiman, J.H. Friedman, R.A. Olsen & C.J. Stone. Classification and
Regression Trees. Wadsworth, 1984.

[3] R. Jager. Fuzzy Logic in Control. Ph.D. dissertation, Technische
Universiteit Delft, 1995.

[4] M. Fajfer and C.Z. Janikow. “Bottom-up Partitioning in Fuzzy Decision
Trees”. International Conference of the North American Fuzzy
Information Society, Atlanta 2000 , pp. 326-330.

[5] C.Z. Janikow. “Exemplar Learning in Fuzzy Decision Trees”.
Proceedings of FUZZ-IEEE 1996, pp. 1500-1505.

[6] C.Z. Janikow. “Fuzzy Decision Trees: Issues and Methods”. IEEE
Transactions on Man, Systems, Cybernetics, Vol. 28, Issue 1, pp. 1-14,
1998.

[7] C.Z. Janikow and Maciej Fajfer. “Fuzzy Partitioning with FID3.1”.
Proceedings of the 18th International Conference of the North American
Fuzzy Information Society, IEEE 1999, pp. 467-471.

[8] C.Z. Janikow and Maciej Fajfer. “Fuzzy Decision Forest”. International
Conference of the North American Fuzzy Information Society, Atlanta
2000, pp. 218-221.

[9] C.Z. Janikow. “Fuzzy Decision Forest”. Proceedings of 22nd International
Conference of the North American Fuzzy Information Processing Society,
Chicago 2003, pp. 480-483.

[10] R.S. Michalski. “Theory and Methodology of Inductive Learning”.
Machine Learning I, Morgan Kaufmann, 1986, pp. 83-134.

[11] J.R. Quinlan. “Induction on Decision Trees”. Machine Learning, Vol. 1,
1986, pp. 81-106.

[12] J.R. Quinlan. “Decision Trees as Probabilistic Classifiers”. Proceedings of
the Fourth International Workshop on Machine Learning, 1987, pp. 31-
37.

[13] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Mateo, CA. 1993.

[14] J.R. Quinlan. “Combining Instance-Based and Model-Based Learning”.
Proceedings of International Conference on Machine Learning 1993,
Morgan Kaufmann 1993, pp. 236-243..

[15] L.A. Zadeh. “Fuzzy Sets”. Information and Control 8 (1965), pp. 338-
353.

[16] L.A. Zadeh. “Fuzzy Logic and Approximate Reasoning”. Synthese 30
(1975), pp. 407-428.

[17] L.A. Zadeh. “The Role of Fuzzy Logic in the Management of
Uncertainity in Expert Systems”. Fuzzy Sets and Systems, 11, 1983, pp.
199-227.

